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A large set of microscopic flow simulations in the Representative Elementary Volume (REV) of a porous
medium formed by staggered square cylinders is presented. For each Reynolds number selected, 10 dif-
ferent porosities are simulated in the 5–95% range. The Reynolds number is varied from Re = 10�3 to
Re = 105, covering the Stokes flow regime, the laminar flow regime and the turbulence flow regime.
Low and moderate Reynolds number flow solutions (Re 6 200) are achieved by numerically solving the
2D Navier–Stokes equations. Reynolds Averaged Navier–Stokes equations are employed to simulate
the turbulence regime. Numerical results allow the investigation of the microscopic features of the flow
as a function of the porosity and Reynolds number. Based on these microscopic results, the permeability
of the porous medium is computed and a porosity-dependent correlation is developed for this macro-
scopic parameter. The Darcy–Forchheimer term or, equivalently, the friction factor, is also computed to
characterize the porous medium for the complete range of porosity and Reynolds number simulated.
The Forchheimer coefficient is found to be weakly dependent on the Reynolds number and strongly
dependent on the porosity if the flow is fully turbulent. A porosity-dependent correlation is proposed
for this quantity for high Reynolds numbers.

� 2009 Elsevier Ltd. All rights reserved.
1. Introduction

The analysis of fluid flowing through porous media is required
in a large range of applications in such industries as chemical,
mechanical, nuclear, geological, environmental, petroleum, etc.
The flow conditions encountered are broad enough to cover a large
range of Reynolds numbers (Re) and a large range of porosities [1].
For example, Stokes flows in porous media may be encountered in
ground water flows while turbulent flows are found in application
such as heat exchangers or nuclear reactors. Several macroscopic
parameters are often needed to complete the porous media models
that are employed to describe such applications. This has moti-
vated the research in the development of relationships to describe
macroscopic parameters, such as permeability and Darcy–Forch-
heimer term, for different kinds of porous media and flow regimes
(i.e. Re) [2–5].

The concept of permeability was introduced in early studies
carried out by Darcy [6] who was investigating the resistance of
a fluid to flow through a solid matrix. Permeability, according to
Kaviany [1], may be understood to be a measure of the flow con-
ll rights reserved.
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ductance of the solid matrix. Darcy found that the mass flow rate
and the pressure gradient are related by the viscosity (fluid param-
eter) and permeability (a property of the porous medium and pre-
sumably independent of the flow conditions). This relationship, or
Darcy law, may be written as:

�rhPif ¼ qm
K

UD; ð1Þ

where m is the fluid viscosity, q is the density, K is the permeability,
UD is the Darcy, or space-averaged, velocity and hPif is the fluid-
averaged pressure.

It is well documented that the inertial effects become signifi-
cant in flows through porous media for Re > 1 (based on pore veloc-
ity and average pore diameter) [7]. Boundary layers start to
develop on solid boundaries in this flow regime, and the relation-
ship between the pressure gradient and the velocity is not linear.
Darcy law is no longer valid, or alternatively, the permeability be-
comes a function of Re. One of the objectives of this study is to cal-
culate the so called ‘‘true” permeability [8] or the permeability
calculated for Stokes flow when the conditions are such that the
Darcy law holds. The relationship between the pressure gradient
and velocity in the inertial regime will be described by means of
the Darcy–Forchheimer approximation that depends on the ‘‘true”
permeability. Alternatively, an ‘‘apparent” permeability can be
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Nomenclature

d square-edge length
dh hydraulic diameter
fD–d friction factor based on Darcy velocity and d
fD–K friction factor based on Darcy velocity and K
k turbulent kinetic energy
kK Kozeny constant
p pore length scale
u microscopic streamwise velocity
F Forchheimer coefficient
H REV’s dimension (REV volume = 2H � H)
K permeability
P pressure
Re Reynolds number
Re ffiffiffi

K
p Reynolds number based on the fluid-averaged velocity

and permeability
UD V-normalized space-averaged streamwise velocity, Darcy

velocity

U cross-section averaged streamwise velocity
V volume of the REV
Vf fluid volume inside the REV

Greek symbols
DP pressure-drop across the REV
DP* non-dimensional pressure-drop across the REV
e turbulent dissipation rate
/ porosity
m kinematic fluid viscosity
mT eddy viscosity
q fluid density

Additional notations
hWif Vf-normalized space average of W
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employed to account for inertial effects in flow through porous
media [8].

At high enough Re, when inertial effects become significant,
experimental results show that the pressure-drop normalized with
the square of the velocity is fairly constant [9]. Therefore, the
momentum equation to describe flows in porous media has been
empirically modified to capture this effect. The Darcy–Forchheimer
equation (see for instance [10]) models the viscous (Darcy) and
inertial behavior of the flow describing the pressure gradient in
one dimensional flow as:

�rhPif ¼ qmUD

K
þ qFU2

Dffiffiffiffi
K
p ; ð2Þ

where the first term on the rhs is the Darcy law and the second one
is the Forchheimer correction. F is the Forchheimer coefficient
which is in general assumed to be dependent on the geometry of
the media only. Note that Eq. (2) is sometimes called Ergun equation
when the Forchheimer coefficient is replaced by the Ergun coeffi-
cient CE. Additionally, it is worth mentioning that the term F=

ffiffiffiffi
K
p

is sometimes called the Forchheimer tensor [11].
Unfortunately, the Darcy–Forchheimer expression to describe

drag forces in the momentum equation in porous media suffers
from the fact that no general expression is available to describe
the Forchheimer coefficient as a function of parameters of the solid
matrix. Additionally, there are contrary evidences in literature
regarding this coefficient’s dependence on Re. For instance, Martin
et al. [3] carried out numerical studies of periodic arrays of cylin-
ders in cross flow, proposing a power-law dependence of the
Forchheimer coefficient on the Re and porosity. On the other hand,
Papathanasio and Markicevic [4] carried out a numerical evalua-
tion of the Ergun and Forchheimer equations for hexagonal and
square arrays of cylinders in cross flow, and unlike Martin et al.
[3], these researchers proposed for the Forchheimer coefficient a
dependence only on the porosity.

Theoretical studies have validated the inclusion of the Forchhei-
mer (quadratic) term. Such studies have also led to suggestion of
more complex descriptions to model the drag forces in the
momentum equation for porous media. For example, based on
length scale constraints and a theoretical analysis, Whitaker [12]
showed that the Forchheimer term for high Re depends on the
square of the velocity. Hsu and Cheng [13] considered the drag
force in spheres placed in dilute systems to conclude that in addi-
tion to the Darcy–Forchheimer approximation, a transitional term
describing the behavior of the boundary layer—that is formed be-
tween the Stokes flow regime and the inertial regime, where the
flow is expected to separate from the surface of the sphere—is
needed. This additional term is shown to be dependent on the
velocity with a 3/2 power law. Experimental results obtained by
Hsu et al. [14] show that the inclusion of this term improves the
prediction of the pressure-drop by 20–30% for moderate Re.

The aim of this study is to compute the pressure-drop in a 2D
porous medium formed by staggered square rods for different flow
regimens. This is achieved by numerically simulating the flow field
in a Representative Elementary Volume (REV) of the porous med-
ium. The simulations cover the full range of flow regimes, from
Stokes flows to fully turbulent flows (10�3 < Re < 105) and a large
spectrum of the porosity (5–95%). The permeability and the
Darcy–Forchheimer term are then computed as a function of
porosity and Re from the results of these simulations. Correlations
for these parameters are developed to help to characterize porous
media models. Moreover, the dependence of the pressure-drop on
the porosity and Re, at high Re, is analyzed and discussed.

This study is organized as follows. The next section is devoted to
the description of the numerical method and geometry employed
to compute the flow field inside the REV. The description of the
numerical simulations carried out in this study for the Stokes, lam-
inar and turbulent regimes follows. Microscopic flow fields for
each flow regime are briefly described and analyzed. Microscopic
results are integrated (i.e. volume-averaged) over the REV to obtain
the permeability and pressure-drop. These results are presented in
two consecutive Sections. In the first one, the permeability is com-
puted as a function of porosity, and a correlation is developed for
this quantity. In the second one, a regime-map of the friction factor
as a function of the Re that covers all the flows regimens and em-
ploys the porosity as a parameter is created. Moreover, for the fully
turbulent regime, a correlation for the friction factor as a function
of porosity is developed and its dependence on the Re is discussed.
2. REV of the porous medium

The porous medium under consideration is formed by a 2D
arrangement of staggered square rods (Fig. 1). The macroscopic
flow field is assumed horizontal and the REV is chosen to be the
rectangle 1234 (Fig. 1). The size of the square rods is varied from
0 to H to allow variations in the porosity. Numerical solutions
are computed in this REV for different Re and for different porosi-
ties. Furthermore, these solutions are space-averaged to compute
the macroscopic parameters of the porous medium.
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Fig. 1. REV of an infinite porous medium formed by staggered square rods.
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2.1. Numerical method

Mass and momentum conservation equations are,

@ui

@xi
¼ 0; ð3Þ

@ui

@t
þ @

@xj
ujui ¼ �

@p
@xi
þ 1

Re
@

@xj

@ui

@xj
: ð4Þ

For Stokes and laminar flow, the Navier–Stokes (N–S) equations
(Eqs. (3) and (4)) are numerically solved in the REV for different
Re and different porosities. For the turbulent regime, the Reynolds
Averaged Navier–Stokes (RANS) equations are employed. In this
case, the k–e model with near wall treatment developed by Abe
et al. [15] (alias AKN model) is used to model the Reynolds stresses.
The momentum and transport equations for k and e are (note that k
and e are made non-dimensional with U2 and U3/p, respectively),
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The eddy viscosity and additional damping functions are computed
as:

mT ¼ Clfl
k2

e
; f l ¼ 1� e

�y�
14

� �2
1þ 5

R3=4
t

e
�R2

t
200

 !
;

f e ¼ 1� e
�y�
3:1

� �2
1� 0:3e�

Rt
6:5

	 
2
� �

; ð8Þ

where y is the distance to the closest wall and, y* = ye1/4Re3/4 and
Rt = k2/eRe. Values of model constants are 0.09, 1.4, 1.4 1.5 and 1.9
for Cl, rk, re, Ce1 and Ce2, respectively.

For all cases reported in this study, fully periodic boundary con-
ditions are applied for the relevant variables over the boundaries of
the REV (lines 1–2, 2–3, 3–4 and 4–1 in Fig. 1). Following boundary
conditions are applied over the boundaries of the REV,

WðyÞj1�2 ¼ WðyÞj3�4

WðxÞj2�3 ¼ WðxÞj4�1

�
and

PðyÞj1�2 ¼ PðyÞj3�4 � DP

PðxÞj2�3 ¼ PðxÞj4�1

�
; ð9Þ

where W is any velocity component or turbulence quantity, and DP
is the driving force responsible for the motion of the fluid.

A standard N–S and RANS equation solver is implemented to
compute the flow field in the REV. The solver is based on the finite
control volume (FCV) technique, and the SIMPLER algorithm devel-
oped by Patankar [16]. Central difference and the QUICK scheme
[17,18] are employed to, respectively, model the diffusion and
the convective terms. The backward Euler scheme is used to ad-
vance in time. Additional details regarding solver implementation
and validation are available in Ref. [19]. Only a brief description of
the implementation of the periodic boundary conditions for the
pressure field is specially addressed in this section due to its
importance in the numerical solution.

The left/right boundary conditions of the REV (lines 1–2 and 3–
4 in Fig. 1) are discussed first. Solutions of the N–S equations in
periodic structures have been of great interest as many engineer-
ing applications require them (e.g. tube bundles, heat exchangers,
porous media, etc.). Patankar et al. [20] for instance, described a
method to implement the periodic boundary conditions in the con-
text of the SIMPLE method. In the simulation of periodic structures,
it is, in general, a standard practice to consider a driving force or
pressure gradient that is responsible for the motion of the fluid
resulting in a corresponding Re [20]. Alternatively, the mass flow
rate may be prescribed and this driving force—that would lead to
the prescribed mass flow rate—is then calculated [5,21]. In this
study, a given fixed mass flow rate (or fixed Re) option is chosen,
and hence the pressure-drop through the REV has to be calculated
as part of the solution. This matter is resolved by considering a
fixed pressure-drop (DP) in the x-direction as indicated in Eq. (9).
An additional equation is therefore needed to calculate the pres-
sure-drop DP (in comparison with the case of non-periodic flows).
A constraint of constant mass flow rate provides this additional
equation. The quantity DP must take a value so that the non-
dimensional streamwise velocity averaged over the inlet section
(or any vertical section) is equal to 1 (a normalized value). Mathe-
matically, this can be expressed as:Z

inlet
udy ¼ 1: ð10Þ

Eq. (10) is solved for DP together with the x-momentum equation
assuring that the mass flow rate is fixed at each time step. [Note
that the solution for time dependent flows may be different if either
the mass flow rate or the driving force is kept constant.]

The top/bottom boundary conditions (lines 2–3 and 4–1 in
Fig. 1) are discussed next. The implementation of periodic bound-
ary conditions on the top and bottom faces of the REV is relatively
simple since no net pressure gradient exists in the vertical direc-
tion. However, it is important to note that periodic and symmetric
boundary conditions are found in literature to model cases similar
to the one being studied here (see for instance [22] for symmetric
BCs or [23] for periodic ones). Both boundary conditions have been
imposed in present simulations and, in general, they yielded the
same solutions. Nevertheless, the solutions may differ if the prob-
lem turns out to be a time dependent one. The assumption of sym-
metry does not allow flow structures to move in the vertical
direction from one cell to another while periodicity does. Addi-
tional comments will be made in this regard in Section 2.2.

The solver employed in this study has been fully tested and val-
idated for a variety of geometries, including those presented in this
study, as well as for a broad range of Reynolds numbers (see [19]
for details). For example, the backward facing step (BFS) bench-
mark problem has been solved for validation purposes. In the lam-
inar regime (Re = 8 � 102), the results obtained by Gartling [24]
have been reproduced with excellent agreement. In the turbulent
regime, DNS results of Le et al. [25] (Re = 5.1 � 103) and experi-
mental results of Kim et al. [26] (Re = 4.47 � 104) have been well
captured.

2.2. Numerical simulations and microscopic results

The porous medium shown in Fig. 1 is again considered. The
edge size of each square cylinder is d and the distance between cyl-
inder’s centers is H. The distance p (= H � d) is used as a measure of
the pore size. Distance between square cylinders in the vertical
direction, H, is fixed. Variables are normalized with the cell length



Fig. 2. Streamlines in one-quarter of the REV for Re = 10�3. Porosities are 95%, 75%, 55% and 35% for panels from left to right and top to bottom, respectively.
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scale (H) and the volume-averaged velocity, UD (Darcy fluid veloc-
ity, UD = Up/H, where U is the average inlet streamwise velocity
over the cross-section p). The Reynolds number and porosity are,
respectively,

Re ¼ UDH
m

; / ¼ 1� d
H

� �2

: ð11Þ

Note that a constant Re implies constant mass flow rate.
Numerical simulations of the porous media cell (REV) shown in

Fig. 1 are carried out for 10 different porosities, ranging from 5% to
95% and 10% interval, and different flow regimens that cover
Stokes, laminar and turbulent flows. The initial conditions in all
cases presented in this study are set in the entire domain as a con-
stant streamwise velocity (u = 1) and zero vertical velocity. Uni-
form grids are employed for low Re flows while non-uniform
grids are used for high Re laminar and turbulent flows (see Appen-
dices A and B). Specific description for each flow regime follows.
1 For interpretation of the references to color in this figure, the reader is referred to
the web version of this paper.
2.2.1. Stokes flow
The first step to calculate the permeability as a function of

porosity is to estimate the minimum grid resolution needed for
the pressure-drop calculation (for given Re). Additionally, since a
N–S equations solver is employed in this study to simulate Stokes
flows, the magnitude of the Re that satisfactorily approximates the
Stokes flow regime (K independent of Re) needs to be determined.
In this regards, it can be pointed out that the permeability, given by
Eq. (1), can be written as a function of Re and pressure-drop
through the REV, as,

K ¼ 2
DP�Re

ð1�
ffiffiffiffiffiffiffiffiffiffiffiffi
1� /

p
Þ2H2; ð12Þ

where DP*(= DP/qU2) is the non-dimensional pressure-drop
through the REV. Inspection of Eq. (12) shows that when the prod-
uct of the pressure-drop through the cell and the Re is independent
of this parameter [3], the flow is in the Stokes regime. Grid resolu-
tion of 104 control volumes per REV and Re = 10�3 is determined to
be sufficient for permeability calculations (see Appendix A).

Fig. 2 shows the streamlines of the flow for four different poros-
ities and Re = 10�3. No eddies are found for this range of Re at any
porosity level [27]. The flow is symmetric about the horizontal line
that divides the REV in two halves, and therefore only half of the
REV may be simulated to obtain the same results as those pre-
sented here. Note that streamlines start and finish at the inlet
and outlet sections of the domain, respectively.
2.2.2. Laminar flow
Based on REV simulations performed for low Re (permeability

calculations) it was found that deviations from Darcy law are weak
at Re � 10. Additionally, it is known [7] that oscillatory flow is
found in porous media preceding the transition to turbulence for
Re � 150. Therefore, a Re = 102 is selected to study laminar steady
flows (where inertia is expected to play an important role in the
flow features) and a set of numerical simulations is carried out.
Pressure-drops in the REV are calculated as a function of porosity.
The grid independence studies for laminar flow conditions that val-
idate the former results are presented in Appendix B. [It is relevant
to mention that direct simulations of the 2D N–S equations for Re
above 150/200 resulted in oscillatory flow behavior. Three porosity
cases—55%, 75% and 95%—were simulated to test this behavior.
Movies showing the time dependent vorticity can be found in
[28]. Modeling of time dependent, oscillatory laminar flow in por-
ous media [10] is not the focus of this study and consequently
these results are not discussed in this work.]

Flow features for the 10 different porosity cases for Re = 102,
simulated using a fine grid (see Appendix B), are presented in
Fig. 3 where one quarter of the REV is shown. The flow was found
to be symmetric about the top and bottom horizontal lines of each
domain. Fig. 3 shows the variation of streamlines patterns with
porosity (red and blue colors show positive and negative vorticity
values, respectively).1 Different from the pattern found for low Re
cases (Fig. 2), streamlines show the existence of several recircula-
tion regions for Re = 102. At low porosities (Fig. 3), a recirculation
region develops right after the corner of the first square. The size
of this eddy is bounded by the length of the inlet section. (Note that
the width of the vertical channel formed between the two squares
is the same as the height of the inlet cross-section p.) A second
eddy is also present at low porosities at the top symmetry line
and over the vertical wall of the first square (clearly visible for
porosities higher than 15% in Fig. 3). These two eddies merge at
35% porosity and the length of the resulting eddy over the vertical
wall is then dictated by the size of the square (d). Its length over
the symmetry line increases with porosity. At high porosities it de-
pends also on d as the flow around one particular square is less af-
fected by the others (Fig. 3). An eddy develops over the horizontal
wall of the second square for porosities equal or above 35% and dis-
appears for porosities above 85%.



Fig. 3. Streamlines for 5–95% porosity in intervals of 10%. Porosity increases from top to bottom and from left to right; Re = 102.
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2.2.3. Turbulent flow
Turbulent flow simulations are carried out employing the AKN

k–e model [15]. The simulated Re are 103, 3 � 103, 104 and 105. The
Re range chosen to carry out the turbulent flow simulations starts
with approximately the minimum Re at which the present imple-
mentation of the k–e model does not break down and finishes with
the fully turbulent regime at which the macroscopic pressure-drop
are expected to be independent of this parameter [23].

A justification of the use of the AKN k–e model is in order. Sev-
eral authors [11,23,29,30] have reported extensive results of simu-
lations in REVs of porous media for both, laminar and turbulent
flows. These researchers employed k–e models for turbulent flows
obtaining steady-state solutions. However, at least for periodic
cylindrical tube bundles, it has been shown that while the k–e
model predicts steady solutions, solutions found with LES feature
vortex shedding and hence are time dependent [31,32]. It has also
been shown that the three dimensionality of the flow at high Re
[31] affects the distribution and characteristics of vortex shedding,
and the results differ from those found in 2D simulations. Although
all these evidence suggest that a detailed DNS/LES of a 3D domain
involving several REVs may be needed to obtain an accurate repre-
sentation of the flow field, the computational cost, in general, is too
high. On the other hand, solution using the RANS equations per-
mits simulation of a relatively large set of domains and Re. This
has been of great help in understanding and developing further in-
sight in the modeling of turbulence in porous media (e.g. see
[23,33]). In particular, Kuwahara et al. [29] have recently reported
a comparison of macroscopic quantities, for the same REV as that
used in this work, obtained employing a 2D k–e model and a 3D
LES. A reasonable agreement was obtained and one of the claims
of the study is that the k–e models can be employed to estimate
macroscopic quantities in the REV.

The porosity range as well as the range chosen for the Re in the
present turbulent flow simulations are quite large and steady solu-
tions are found in almost all cases. This may be attributable to the
excessive dissipation of the k–e model [32]. However, it should be
noted that the results of numerical simulations reported by Kuwa-
hara et al. (3D LES [29]), do not show vortex shedding. The only
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case in the present study that showed time dependence is for 95%
porosity and Re = 103 [28]. This solution is periodic and clearly
shows vortex shedding behind the solid squares.

One figure showing the turbulent flow field in the REV for dif-
ferent porosities and Re follow. Fig. 4 shows the streamlines for
55% porosity and four Re. Note that the size of the recirculation re-
gion behind the square increases slightly as Re is increased from
Re = 104 to 105.
3. Computation of macroscopic parameters: permeability and
Darcy–Forchheimer term

Microscopic results presented in Section 2.2 allow the computa-
tion of macroscopic parameters that are relevant to the macro-
scopic representation of the porous medium. The next two
sections present the results obtained for the permeability and
Darcy–Forchheimer term for the entire range of porosity and Re
simulated.
3.1. Computation of permeability

Permeability and porosity (more precisely effective porosity)
are both characteristics of the porous matrix. However, as pointed
out by Kaviany [1, p. 27] no general relationship exists between
these two parameters. Existing correlations are in general re-
stricted to a constant porosity, range of porosities, type of matrix,
etc. For example, the Carman–Kozeny equation is used in general
to describe the permeability as a function of porosity [1]. Using
the concept of hydraulic diameter and the Hagen–Poiseuille veloc-
ity in straight conduits, the permeability can be expressed as a
function of the porosity, hydraulic diameter and the Kozeny con-
stant (/, dh, kK, respectively) as:

K ¼ /d2
h

16kK
: ð13Þ

Microscopic solutions of the N–S equation in the REV shown in
Fig. 1 can be used to determine the macroscopic pressure gradient
and the Darcy velocity and therefore, the permeability by means of
Eq. (12). It is noted that to relate the microscopic and macroscopic
Fig. 4. Streamlines for 55% porosity. From left to right and to
quantities in the REV, the gradient of the fluid-volume-averaged
pressure that appears in the Darcy law (Eq. (1)) can be calculated
as (see Fig. 1):

rhPif ¼ r 1
Vf

Z
Vf

P dV

" #

¼ 1
2H

1
2H2/

Z
Vf

½Pðxþ 2H; yÞ � Pðx; yÞ�dV ¼ �DP
2H

; ð14Þ

where DP is again the pressure-drop across the cell. Note that peri-
odicity in the pressure field has been used (Eq. (9)). Similarly, the
Darcy velocity can be calculated as:

UD ¼
1
V

Z
Vf

udV ¼ 1
2H2

Z
2H

dx
Z

H
udy ¼ 1

2H2

Z
2H

Updx ¼ Up
H
; ð15Þ

where U is the average inlet velocity and Up is the inlet flow rate in
the REV. Using Eqs. (1), (14), and (15), Darcy law can be rewritten in
the form of Eq. (12) as a function of the microscopic quantities
where Re is based on the inlet flow rate (Up).

Microscopic results presented in Section 2.2 are used to calcu-
late the permeability using Eq. (12). Results are shown in Fig. 5
where permeability is plotted as a function of the porosity with
two different normalizations. Recalling the Carman–Kozeny
approximation formula (Eq. (13)) and using the definition of the
hydraulic diameter (dh = //(1 � /)d for the REV used here), the
non-dimensional permeability may be written as:

K

H2 ¼
1

16kK

/3

ð1� /Þ or
K

d2
h

¼ /
16kK

: ð16Þ

The horizontal and vertical axes in Fig. 5 have been chosen
based on these expressions. As expected, and shown in Fig. 5, for
low porosities the permeability tends to zero, or equivalently, the
pressure gradient tends to infinity for a fixed flow rate. Thus the
numerical results agree very well with the Carmen–Kozeny equa-
tion for low porosity values. For large porosities, the numerically
determined permeability does not follow the Carman–Kozeny
equation. Recall that the Carmen–Kozeny relationship is based on
treating the porous media as a network of capillaries, and hence
it is not surprising that it does not hold for large values of porosi-
ties. The straight line in Fig. 5a—that shows the linear relationship
p to bottom; Re = 103, 3 � 103, 104 and 105, respectively.



Fig. 5. Numerically calculated permeability as a function of porosity. (a) Perme-
ability normalized with a fixed length dimension (H) and a linear fit ala Carmen–
Kozeny. (b) Permeability normalized with a porosity dependent length dimension
(dh, hydraulic diameter) and a fitted curve given by Eq. (17). Note that the
horizontal axes in the two panels are also different.
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suggested by the Carmen–Kozeny equation—is obtained by fitting
the numerical data over porosity values of (0, 0.45), or over
(10�4, 0.16) of the horizontal scale of the cartoon. The Kozeny con-
stant that resulted from the fit is 16kK = 131. The fit based on the
Carman–Kozeny theory matches the numerically calculated per-
meabilities within a 10% error for porosities lower than 55%. The
disagreement between the numerically determined permeability
values and those predicted by the Carmen–Kozeny equation (for
high porosity values) is in agreement with the well known fact that
the Kozeny constant is porosity dependent [1].

The numerically calculated values for the permeability are com-
pared with similar results in literature obtained for the same
geometry. Numerically calculated permeabilities were reported
by Saada et al. [34] in the 10–90% porosity range. Reported values
for 15%, 35%, 65% and 85% porosity are K/H2 � 3.0 � 10�5,
5.0 � 10�4, 5.3 � 10�3 and 2.2 � 10�2, respectively. Corresponding
values determined in this study are 3.3 � 10�5, 5.2 � 10�4,
5.3 � 10�3 and 2.2 � 10�2. The agreement is fairly good over the
entire porosity range.

Analytical studies of slow flow through periodic arrays of cylin-
ders provide good insight regarding the dependence of permeabil-
ity on porosity (see for instance Sangani and Acrivos [35]). In the
limit of concentrated arrays (/ ? 0), the approximations used in
lubrication theory [36] can be employed to analytically solve the
flow. It is found that the dependence of permeability on ‘‘solid con-
centration” (i.e. 1 � /) in this limit is a power law [35]. Addition-
ally, in the limit of dilute arrays (/ ? 1), the flow can be solved
analytically [37]. The dependence of permeability in this limiting
case involves logarithmic, linear and quadratic functions of the so-
lid concentration [35]. Erdmann [38] studied in detail the perme-
ability of different ordered porous media in transverse flows. He
found that numerical fits based on the (theoretical) functional
dependence on porosity in the limit of concentrated arrays are able
to fairly represent the permeability over the entire range of poros-
ity. A fit of this kind is shown in Fig. 5b, which functionally and
parametrically is given by:

K

H2 ¼ 0:306 1� ð1� /Þ0:270
� �2:910

: ð17Þ

This fit captures the numerically calculated data points for perme-
ability within 7% of accuracy over the entire porosity range
considered.

3.2. Computation of pressure-drop: Darcy–Forchheimer term

As was pointed out in Section 1, the Darcy–Forchheimer equa-
tion models the viscous (Darcy) and inertial behavior of the flow
describing the pressure gradient in one dimensional macroscopic
flow (Eq. (2)). By analogy with the clear flow case, the pressure gra-
dient in the porous media is often presented as a correlation be-
tween the friction factor and the Re. If Eq. (2) is made non-
dimensional, the friction factor may be defined as:

fD—K ¼ �
rhPif

ffiffiffiffi
K
p

qU2
D

¼ mffiffiffiffi
K
p

UD

þ F ¼ 1
ReD—K

þ F; ð18Þ

where the pressure gradient is made non-dimensional with the
square of the Darcy velocity and the square root of the permeability,
and ReD–K is the Re based on the Darcy velocity and the square root
of the permeability. The aim of this section is to compute the fric-
tion factor in the transition from Stokes to laminar flow and, to tur-
bulent flow, and to determine its dependence on porosity and Re.

Microscopic numerical results described in Section 2.2 are used
to compute the friction factor defined in Eq. (18). For each pair of
porosity and Re, the macroscopic pressure gradient through the
porous cell is calculated using Eq. (14), and the Darcy velocity is
calculated using Eq. (15). The numerically determined permeabil-
ity (Fig. 5) is employed to calculate the friction factor and ReD–K.
The friction factor is calculated for the 10 porosities (5–95% with
increments of 10%) and for the six different Re simulated (10�3,
100, 103, 3 � 103, 104, 105), and is shown in Fig. 6a. Additionally,
for porosities equal to 5%, 55% and 95%, results obtained for
Re = 10�2 and 10 are also included in Fig. 6a (see Appendix A).

Fig. 6a shows good agreement between the numerical data and
Darcy law for all porosities up to ReD–K � 0.1. Note that Darcy law
begins to deviate from the experimental data for ReD–K greater than
0.1 [1]. For ReD–K > 1, results are also shown in Fig. 6b with a linear
scale for the friction factor. Based on this figure, it may be con-
cluded that the Forchheimer coefficient as well as the friction factor
are fairly constant at fixed porosity. Hence, for this REV, the Forch-
heimer coefficient scales well with the square of the velocity and is
assumed to be fairly independent of the Re. Moreover, as expected,



Fig. 7. Friction factor as a function of porosity for high Re. (a) Scaled with (1 � /)//3.
(b) Scaled with (1 � /)// and fitted with Eq. (21).

Fig. 6. Friction factor as a function of ReD–K for 10 different porosities. (a) Complete
Re range. (b) Inertial regime zoomed in.
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a strong dependence on the geometry is found. Note that this coef-
ficient is in general modeled to vary as a negative power of the
porosity [10].

The analysis of the microscopic flow presented in Section 2.2
provides good insight to further understand results shown in
Fig. 6b. As expected, the comparison of the microscopic flow for
two different porosities shows that the size and location of eddies
are strongly dependent on the porosity. For a constant porosity,
however, slight variations of the microscopic flow were shown as
the Re is increased from 104 to 105. This aspects are reflected in
Fig. 6b which shows a strong dependence of the friction factor on
the porosity and a fairly constant friction factor at high Re (turbu-
lent regime).

In order to study the dependence of the Forchheimer coefficient
on porosity in the fully turbulent regime and to compare present re-
sults with available published data, the pressure gradient is
normalized as suggested by Kuwahara et al. [29]. For velocity this
normalization employs the Darcy velocity. However, the edge size
of the square rods (d) is used as the length scale. Noting that the con-
tribution to the friction factor from the Darcy law is less than 1% for
all porosities and for the highest ReD–K number simulated, only the
quadratic term is assumed to contribute to the friction factor in the
following comparison. (See Fig. 6b for the / = 5% case. The contribu-
tion from the Darcy law in this case is the largest, and RD–K = 102 and
fD–K = 1.25. Hence, Darcy’s contribution in less than 1%.) With this
new normalization, the friction factor is written as:

fD—d ¼ �
rhPif d

qU2
D

¼ Fdffiffiffiffi
K
p : ð19Þ
Kuwahara et al. [29] presented numerical results for fD–d evaluated
at high Re for the same REV as that studied here. Those results are
based on 3D simulations using LES and 2D simulations employing
the k–e model with near wall treatment. The porosity range in their
study is 50–90%. Kuwahara et al. [29] found that the numerical re-
sults are reproduced fairly well in this range of porosity by the
empirical Ergun’s equation. This equation simply relates the friction
factor and the porosity as:

fD—d ¼ 2:0
1� /

/3 ; ð20Þ

where the coefficient 2.0 was calculated by Kuwahara et al. [29] by
fitting the numerical results (more commonly used value for this
coefficient is 1.75 [1]). Fig. 7a shows results obtained by Kuwahara
et al. [29] for high Re, present results for Re = 105 (based on Up) and
10 different porosities, and the Ergun’s empirical equation fitted by
Kuwahara et al. [29]. In the 50–90% porosity range, present results
agree fairly well with those reported by Kuwahara et al. [29].

For porosities less than 40% (right side of Fig. 7a), present re-
sults depart from Ergun’s equation. Additionally, it is noted in
Fig. 7a that for low porosities the friction factor grows more slowly
than at high porosities relative to the abscissa. Hence, for the 5–
95% porosity range simulated in the present study a (1 � /)// scale
for the friction factor is found to be more appropriate. This is shown
in Fig. 7b for Re = 3 � 103, 104 and 105 along with a power-law fit
with (1 � /)//,

fD—d ¼ 8:509
1� /

/

� �1:619

: ð21Þ
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This specific power-law fit leads to an error no greater than 5% in
the 35–85% porosity range and an error that is less than 20% in
the entire porosity range. [It is noted that by employing the corre-
lations developed for the permeability, Eq. (17), and the one devel-
oped for the friction factor, Eq. (21), an analytical expression for the
Forchheimer coefficient as a function of porosity can be found.]
4. Summary and conclusions

A large set of microscopic flow simulations of the REV of a por-
ous medium formed by staggered square cylinders is presented in
this study. These simulations are characterized by the imposition
of periodic boundary conditions and are constrained to a constant
mass flow rate. The flow distribution inside the REV is investigated
for different flow regimes that cover eight orders of magnitude of
the Re (from Stokes flows to turbulent flows). Symmetric and stea-
dy flows are encountered in the complete set of simulations with
the exception of one case (with Re = 103 and 95% porosity) that re-
sults in a time dependent flow. For Re greater than 150–200 (lam-
inar flow), direct numerical simulations of the N–S equations result
in time dependent solutions (at least for the 55–95% porosity
range).

Simulations of Stokes flows are carried out using a N–S equation
solver. The flow is characterized by open streamlines that enter
and leave the periodic computational domain. Based on the results
of numerical simulations, it is found that the semi-analytical Car-
man–Kozeny equation commonly used to estimate permeability
as a function of porosity does not capture the permeability’s
dependence on porosity over porosity range of 5% < / < 95%. There-
fore, a new correlation for the permeability of the medium as a
function of porosity is developed by fitting to the numerically ob-
tained data. This correlation captures the relationship over the en-
tire range of porosity studied here (5–95%) better than the
Carmen–Kozeny equation, and can be employed in macroscopic
numerical models to compute the permeability as a function of
porosity assuring errors below 7% in 5–95% porosity range.

Laminar flow simulations clearly show a dominant inertial com-
ponent compared to the viscous-dominated Stokes flows. A core
flow passing through the REV and several recirculation regions at-
tached to the solid walls are identified in microscopic simulations.
For Re = 102, a deviation from Darcy law is noted for porosities
greater than 15%.

Microscopic solutions in the turbulence regime show, as in the
laminar case, the formation of recirculation regions and a core flow
passing through the REV. The microscopic solutions for high en-
ough Re (Re P 104) are weakly dependant on this parameter. This
translates to a fairly constant pressure-drop across the cell in this
high Re regime.

The Darcy–Forchheimer approximation, or equivalently, the
friction factor, is fully characterized for the porous medium ana-
lyzed in this study. The Forchheimer coefficient is found to be
strongly dependent on the porosity and fairly independent of the
Re in the turbulent regime. The Ergun equation is shown to be
appropriate only for a limited range of porosities. If the entire
range of porosity is considered, the friction factor (fD–d) can be bet-
ter approximated by a power law as a function of (1 � /)//. A cor-
relation was developed for the friction factor at high Re. This
correlation assures errors below 20% over the entire range of
porosity studied in this work.
Appendix A. Grid independence study for low Re flow
simulations

As the objective of the low Re flow simulations is to calculate
the REV’s permeability, this grid independence study is focused
on the accuracy of the results obtained for the pressure-drop
through the cell and the product of the pressure-drop and Re. Table
A.1 shows the results for the non-dimensional pressure-drop for
Re = 10�3 and three different porosities (5%, 55% and 95%) as a
function of the grid resolution. For each case presented in Table
A.1, uniform grid resolutions are chosen so that approximately
5 � 103 (Coarse), 104 (Fine) and 2 � 104 (Finest) control volumes
(CVs) resulted in successively refined discretizations. Employing
Richardson’s extrapolation [39] and based on results of the three
grids considered, the pressure-drop is extrapolated. This value is
presented in Table A.1 together with the order of accuracy ob-
tained for the Richardson extrapolation. Moreover, the product of
the pressure-drop and Re is also shown for different inlet flow rates
corresponding to Re = 10�1 and Re = 10 (for the fine grid case only).

Results reported in Table A.1 show that the error in the pres-
sure-drop calculated with the fine grid (� 104 CVs) with respect
to the extrapolated value is within 1% for the three porosities con-
sidered. Additionally, Table A.1 shows that the conditions for the
Re of 10�3 correspond to Stokes flow. Note that the product of pres-
sure-drop and the Re for Re = 10�1 resulted in the same values as
that for Re = 10�3 case (at least within three significant figures).
It is thus concluded that permeability values are accurately calcu-
lated using a grid resolution of 104 CVs per domain and a Re of 10�3

for all porosities considered in this study.
Appendix B. Grid independence study for moderate and high Re
number flows

Realizing that the purpose of these simulations is to calculate
the pressure-drop through the cell, the grid convergence is tested
by tracking this macroscopic variable. Large variation in the REV’s
geometry over the range of porosity simulated in this study poses a
challenge for the grid independence study since it is time consum-
ing and impractical to carry out a separate study for each porosity
and each Re. (The inlet section’s p/H changes from 0.025 to 0.77
over the porosity range considered.) As the Re is based on the inlet
flow section (p, Fig. 1) for both, laminar and turbulent flows, it is
assumed that flow structures can be resolved with the same p-nor-
malized CV size, independent of the porosity. Therefore, if a verti-
cal discretization of the inlet section is determined to be
sufficiently refined in a grid refinement study for a particular
porosity, the same discretization is assumed to be sufficient for
all other porosities when dimensions are normalized with p. Based
on this assumption, it is convenient to carry out grid independence
studies for the 75% porosity case. This porosity has the advantage
of possessing only two horizontal lines that define solid walls.
Hence, this porosity requires less grid points than other porosities
for the same resolution.

The strategy selected to define the computational grid at differ-
ent porosities and fixed Re yields an average mesh size (p-normal-
ized) that increases when porosity is reduced. For low porosities, p
is small relative to the REV size and hence the p-normalized do-
main becomes large. The use of non-regular grids that cluster
points near the walls yields large cells in regions located far away
from the corners of the solid squares. Hence, to employ the same
discretization for the inlet section independent of the porosity
yields an average mesh size (p-normalized) that increases when
porosity is reduced. For this reason, grid independence studies
are carried out for the lowest porosity under consideration (5%)
in addition to the 75% porosity case. To avoid excessive computa-
tional time, less resolved meshes than in the 75% porosity case
are employed in the 5% porosity case. Moreover, for the sake of
completeness, the other end of the porosity spectrum studied here
(95%) is also considered in the grid independence study and corre-
sponding results can be found in [19]. Non-regular grids that



Table A.1
Grid independent study for 5%, 55% and 95% porosities. Last row for each porosity level shows the (Richardson) extrapolated value for the pressure-drop and the order of
convergence. Results for the fine grid and Re = 10�1 and 10 cases are also shown for each porosity.

Porosity Grid–CVs per inlet section DP* Re DP*Re

/ = 0.05 (p/H = 0.025) 6 (Coarse) 1.161 E+06 10�3 1.161 E+03
8 (Fine) 1.167 E+06 10�3 1.167 E+03
10 (Finest) 1.170 E+06 10�3 1.170 E+03
8 1.167 E+04 10�1 1.167 E+03
8 1.170 E+02 10 1.170 E+03
Extrapolated value (order = 2.0) 1.175 E+06

/ = 0.55 (p/H = 0.329) 22 (Coarse) 8.109 E+04 10�3 8.109 E+01
30 (Fine) 8.093 E+04 10�3 8.093 E+01
44 (Finest) 8.079 E+04 10�3 8.079 E+01
30 8.093 E+02 10�1 8.093 E+01
30 8.441 E+00 10 8.441 E+01
Extrapolated value (order = 0.7) 8.028 E+04

/ = 0.95 (p/H = 0.776) 10 (Coarse) 2.210 E+04 10�3 2.210 E+01
16 (Fine) 2.198 E+04 10�3 2.198 E+01
22 (Finest) 2.193 E+04 10�3 2.193 E+01
16 2.198 E+02 10�1 2.198 E+01
16 2.463 E+00 10 2.463 E+01
Extrapolated value (order = 1.2) 2.183 E+04

Table B.1
Grid independence study for 75% porosity and Re = 104. The average mesh size is
calculated as the area of the domain divided by the number of grid points. The order
of extrapolation as well as the extrapolated values is calculated using the fine, fine-2
and the finest grids.

CVs across the inlet section Averaged mesh size (p-normalized) DP*

24 (Coarse) 0.0417 1.476
34 (Medium) 0.0294 1.464
48 (Fine) 0.0208 1.460
68 (Fine-2) 0.0147 1.458
96 (Finest) 0.0104 1.457
68 (y1-reduced) 0.0147 1.466

Order of extrapolation 2.25
Extrapolated value 1.456
% Error fine grid to extrapolated value 0.2
% Error fine grid to y1-reduced grid 0.4

Table B.2
Grid independence study for 5% porosity and Re = 104.

CVs across the inlet section Average mesh size (p-normalized) DP*

24 (Coarse) 0.1383 1.898
34 (Medium) 0.0978 1.860
48 (Fine) 0.0687 1.845
48 (y1-reduced) 0.0724 1.849

Order of extrapolation 2.88
Extrapolated value 1.837
% Error fine grid to extrapolated value 0.4
% Error fine grid to y1-reduced grid 0.2
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cluster points near walls are employed for the complete set of lam-
inar and turbulent flow simulations. The formula that defines the
grid point’s locations can be found in Tannhehill et al. [40, p.
335] or Teruel [19].

A particular consideration in turbulent flow simulations is the
distance of the first computational point to the wall. In general,
for turbulence models with near wall treatment (e.g. AKN model
employed here), it is recommended to locate this point at a dis-
tance lower than 1 (+units). Because the friction velocity is not
known a priori, the strategy followed here is based on the calcula-
tion of y+ = 1 for the fully developed turbulent channel flow with
the same parameters (p, Re) as those that exist at the inlet section
of the REV. Approximately, half of this value is then used to define
the location of the point closest to the wall. In general, this strategy
yields a posteriori y+ values lower than 10 in the poorest resolved
locations which are on the front-vertical walls of the squares (i.e.
where the flow impinges). Grid sensitivity studies are carried out
to evaluate the influence of the location of the first grid point from
the wall.

For the sake of space, the grid independence study for the lam-
inar case (Re = 102) is not presented here. Note that from the grid
resolution point of view the turbulent case is more demanding
than the laminar case. It is however pointed out that 48 CVs across
the inlet section were employed. This grid yields errors within 1%
with respect to the extrapolated values.

A grid independence study is carried out for Re = 104. Five dif-
ferent grids are considered for the 75% porosity case. The location
of the first point normal to the wall is kept fixed. For this Re this
location is 1 � 10�3 (y+ = 1 corresponds to y1/p = 1.68 � 10�3 in
channel flow simulations). An additional grid is simulated where
the location of the first point is five times closer to the wall than
in previous grids (y1/p � 2 � 10�4). Table B.1 shows the results
for grids ranging from 24 to 96 CVs across the inlet section. The fine
grid (48 CVs across the inlet section) has acceptable computational
cost and leads to errors within 1% with respect to the extrapolated
values. To evaluate the sensitivity of the results to the location of
the first computational point from the wall, results for a grid with
68 CVs across the inlet section are also shown in Table B.1 (y1/
p � 2 � 10�4, y1-reduced grid). The fine grid shows results within
1% of the y1-reduced grid.

Considering more modest grid resolutions than in the 75%
porosity case, a grid study is carried out for 5% porosity case. Table
B.2 shows the 5% case where the more resolved grid corresponds to
48 CVs across the inlet section. Fine grid results are within an error
of 1% of the extrapolated values. Moreover, the error with respect
to the y1-reduced grid is also within 1%. Note that the 5% porosity
case is expected to yield the largest errors of all porosity cases as
the p-normalized average mesh size is the largest. Based on this
grid refinement study, it is concluded that a grid with 48 CVs
across the inlet section and y1/p = 0.001 is a good compromise be-
tween computational cost and accuracy for all porosities.

No grid independence study is carried out for Re equal to 103

and 3 � 103. A fine grid is employed for the calculation of all poros-
ities with 48 CVs across the inlet section. A shorter version of the
grid refinement study is conducted for 75% porosity and Re = 105.
This study is similar to the one presented above for Re = 104 results
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are given in Teruel [19]. It is shown that a grid with 60 CVs across
the inlet section and with y1/p = 1.3 � 10�4 is sufficiently refined to
calculate the pressure-drop for all porosities (errors below 1%) for
this Re.
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